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1. INTRODUCTION 
     The study of flows and heat transfer through a curved 
duct is of fundamental interest because of its importance 
in chemical, mechanical and biological engineering. Due 
to engineering applications and their intricacy, the flow 
in a rotating curved duct has become one of the most 
challenging research fields of fluid mechanics. Since 
rotating machines were introduced into engineering 
applications, such as rotating systems, gas turbines, 
electric generators, heat exchangers, cooling system and 
some separation processes, scientists have paid 
considerable attention to study rotating curved channel 
flows. The readers are referred to Berger et al. [1] and 
Nandakumar and Masliyah [2] for some outstanding 
reviews on curved duct flows. 
     One of the interesting phenomena of the flow through 
a curved duct is the bifurcation of the flow because 
generally there exist many steady solutions due to duct 
curvature. Many researches have performed 
experimental and numerical investigations on developing 
and fully developed curved duct flows. An early 
complete bifurcation study of two-dimensional (2D) 

flow through a curved channel was conducted by Winters 
[3]. However, an extensive treatment on the flow 
characteristics for both the isothermal and 
non-isothermal flows through curved duct with 
rectangular cross section was performed by Mondal [4].  
     The flow through a rotating curved duct is another 
subject, which has attracted considerable attention 
because of its importance in engineering devices. The 
fluid flowing in a rotating curved duct is subjected to two 
forces: the Coriolis force due to rotation and the 
centrifugal force due to curvature. For isothermal flows 
of a constant property fluid, the Coriolis force tends to 
produce vortices while centrifugal force is purely 
hydrostatic. When a temperature induced variation of 
fluid density occurs for non-isothermal flows, both 
Coriolis and centrifugal type buoyancy forces can 
contribute to the generation of vortices (Wang and Cheng 
[5]). These two effects of rotation either enhance or 
counteract each other in a non-linear manner depending 
on the direction of wall heat flux and the flow domain. 
Therefore, the effect of system rotation is more subtle 
and complicated and yields new; richer features of flow 
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and heat transfer in general, bifurcation and stability in 
particular, for non-isothermal flows [6]. Recently, 
Mondal et al. [7] performed numerical prediction of 
non-isothermal flows through a rotating curved square 
channel with the Taylor number 20000 ≤≤ Tr  for the 
Grashof number 500=Gr . 
     In the present paper, a comprehensive numerical 
study is presented for the flows through a rotating curved 
duct with square cross section. Flow characteristics are 
studied over a wide of the Taylor number for the Dean 
numbers, Dn =1000 and Dn=2000. Studying the effects 
of rotation on the flow characteristics is an important 
objective of the present study. 
 
 
2. BASIC EQUATIONS 
     Consider a hydro-dynamically fully developed 
two-dimensional flow of viscous incompressible fluid 
through a rotating curved duct with square cross section, 
whose height and wide are h2  and l2 , respectively. In 
the present case, we consider lh = (square duct). The 
coordinate system with the relevant notation is shown in 
Fig. 1, where x′  and y′  axes are taken to be in the 
horizontal and vertical directions respectively, and z ′  is 
the axial direction. The system rotates at a constant 
angular velocity TΩ around the y′ axis. vu,  and w  be  
the velocity components in the x′ , y′ and z ′ directions 
respectively. All the variables are non-dimensionalzed.   
 

 
 

Fig 1. Coordinate system of the rotating curved square 
duct 

 
The sectional stream function ψ  is introduced as 
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     Then, the basic equations for the axial velocity w and 
the stream function ψ are expressed in terms of 
non-dimensional variables as:       
:       
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     The non-dimensional parameters Dn , the Dean 
number  andTr , the Taylor number, which appear  in 
equation (2) and (3) are defined as: 
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where the parameters denote their usual meaning.  
 
The rigid boundary conditions for w  and ψ  are used as 
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     There is a class of solutions which satisfy the 
following symmetry condition with respect to the 
horizontal plane 0=y . 
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     The solution which satisfies condition (7) is called a 
symmetric solution and that does not an asymmetric 
solution. Note that, Equations (2) - (3) are invariant under 
the transformation of the variables 

          
⎪
⎭

⎪
⎬

⎫

−−⇒

−⇒

−⇒

tyxtyx
tyxwtyxw

yy

,,(),,(
),,,(),,(

ψψ

                  (7)       

Equations (2) and (3) would serve as the basic governing 
equations which will be solved numerically. 
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3. NUMERICAL METHODS 
     In order to solve the Equations (2) and (3) numerically, 
the spectral method is used. By this method the 
expansion functions )(xnφ  and  )(xnψ  are expressed 
as                                                
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     Where ))(1coscos()( xnxnC −=  is the thn  order 
Chebyshev polynomial. ),,(),,,( tyxtyxw ψ are 

expanded in terms of the expansion functions )(xnφ  

and )(xnψ  as 
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     where M  and N  are the truncation numbers in the 
x  and y  directions respectively. 
     First, steady solutions are obtained by the 
Newton-Rapshon iteration method and then linear 
stability of the steady solutions is investigated against 
only two-dimensional ( −z independent) perturbations. 
Finally, in order to calculate the unsteady solutions, the 
Crank-Nicolson and Adams-Bashforth methods together 
with the function expansion (10) and the collocation 
methods are applied to Eqs. (2) and (3).  
 
 
4. RESISTANT COEFFICIENT  
     The resistant coefficient λ  is used as the 
representative quantity of the flow state and is generally 
used in fluids engineering, defined as  
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dimensional ones, 〉〈 stands for the mean over the cross 

section of the duct and  ( ) ( )dlddlddh 44/224* +×=  

is the hydraulic diameter. The main axial velocity 〉〈 *ω  
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non-dimensional axial velocity 〉〈 ω     as    
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where vd /2 * 〉〈=〉〈 ωδω .  
 
 
 

5. RESULTS AND DISCUSSION 
5.1 Case I: Positive Rotation 
       In order to study the non-linear behavior of the 
unsteady solutions, time-evolution calculations are 
performed for Dn=1000 over the Taylor 
number 10000 ≤≤ Tr . It is found that the flow is 
periodic for 1400 ≤≤ Tr . Figure 2(a) shows time 
evolution of λ  for Dn = 1000 and Tr = 0, where it is seen 
that the flow is time periodic, which is well justified by 
drawing the phase spaces as shown in Fig. 2(b). Then, in 
order to see the change of the flow characteristics, as 
time proceeds, contours of typical secondary flow 
patterns and axial flow distributions are shown in Fig. 3, 
where it is seen that the periodic solution at Dn = 1000 
and Tr = 0 oscillates between asymmetric two- and 
four-vortex solutions. It is found that the flow is 
steady-state for 630150 ≤≤ Tr . Figure 4(a) shows 
steady-state solution at Tr = 150. Secondary flow 
patterns, as shown in Fig. 4(b), show that it is a 
symmetric two-vortex solution. If Tr is increased further, 
i.e. for 890640 ≤≤ Tr , the flow becomes periodic. 
However, the flow becomes chaotic at the large values of 
Tr, 1000900 ≤≤ Tr .   
       
 
        
 
 
 
 
 
     (a) 
 
    
 
 
 
 
 
 
 
 
 
 
       (b) 
 
 

 
Fig 2. (a) Time evolution ofλ  for Dn = 1000 and Tr = 0. 
(b) Phase Plots in the γλ −  plane for Dn = 1000 and Tr 

= 0, where ∫∫= dxdyψγ . 
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         t      11.01        11.10         11.20        11.34 
 

Fig 3. Contours of secondary flow patterns (top) and 
axial flow distribution (bottom) for Dn=1000 and Tr =0. 

 
 
 
       
 
 
 
 
       (a) 
 
   
                              
       (b) 
 

 
Fig 4. (a) Unsteady solutions for Dn=1000 and Tr = 150. 
(b) Contours of secondary flow and axial flow at t = 20. 
 
 

  
 
 
 
 
 
 
 
     (a) 
 
 
            
 
 
 
 
 
 
 
 
 
        (b) 
 

Fig 5. (a) Time evolution of  for Dn=1000 and Tr = 
1000. (b) Phase spaces in the γλ −  plane. 

 
 
 
 
 

         
         
 
 
 
 
 
            t    20.05        20.10         20.15        20.20 
 
Fig 6. Contours of secondary flow patterns and axial flow 

distribution for Dn = 1000 and Tr = 1000. 
        
     Figure 5(a) shows time-evolution of λ for Dn = 1000 
and Tr = 1000, where it is seen that flow oscillates 
irregularly that is the flow is chaotic. The corresponding 
phase space is shown in Fig. 5(b), which shows the 
chaotic orbit. Then contours of secondary flow patterns 
and axial flow distributions are shown in Fig. 6, where it 
is seen that the chaotic solution at Dn = 1000 and Tr = 
1000 oscillates between four-vortex solutions.  
       Then we investigate unsteady solutions for Dn=2000 
and 10000 ≤≤ Tr . It is found that the flow is 
steady-state for 800 ≤≤ Tr . Figure 7(a) shows time 
evolution of λ  for Dn = 2000 and Tr = 0, where it is seen 
that the flow is steady-state. Since the flow is steady-state, 
a single contour of secondary flow pattern and axial flow 
distribution is shown in Fig. 7(b). As seen in Fig. 7(b), 
the flow is a symmetric two-vortex solution. It is found 
that the flow is periodic and multi-periodic 
for 53090 ≤≤ Tr . Figure 8(a) shows periodic 
oscillation at Dn = 2000, Tr =90. Contours of secondary 
flow patterns and axial flow distribution for Dn = 2000 
and Tr = 90 are shown in Fig. 8(b), where it is seen that 
the periodic oscillation as a symmetric two-vortex 
solution. If Tr is increased further, i.e. 1000540 ≤≤ Tr , 
the flow becomes chaotic. Figure 9(a) shows unsteady 
solutions for Dn=2000 and Tr = 1000 and it is found that 
the flow is chaotic, which is justified by the phase plots 
as shown in Fig. 9(b). 
 

(a)  
 
                                
 
 
     (b) 
 

Fig 7 (a) Time evolution of  for the unsteady solutions 
at Dn=2000 and Tr = 0. (b) Contours of secondary flow 

and axial flow distribution at t = 10. 
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        t     80.36           80.39        80.40          80.41    
 
Fig 8. (a) Unsteady solutions for Dn=2000 and Tr = 90. 
(b) Contours of secondary flow patterns and axial flow 

distribution for Dn = 2000 and Tr = 90. 
 
 

 
 
 
 
 
    (a) 
 
 
 
 
 
 
 
 
 
 
 
       (b) 
 
Fig 9. (a) Time evolution of  for the unsteady solutions 
for Dn=2000 and Tr = 1000. (b) Phase spaces for Dn = 

2000 and Tr = 1000. 
 

5.2 Case II: Negative Rotation 
     We rotate the duct in the negative direction for 

1000100 −≤≤− Tr  and investigate the unsteady flow 
behavior for Dn = 1000. Time evolutions of λ for 

150100 −≤≤− Tr show that the flow is periodic or 
multi-periodic. Figure 10(a) shows that the flow is 
periodic for Dn = 1000 and Tr = -100, but its phase space 
shows (Fig. 10(b)) that it is multi-periodic. Then, in order 
to see the change of the flow characteristics, as time 

proceeds, contours of typical secondary flow patterns 
and axial flow distributions for Tr = -100 are shown in 
Fig. 11, where it is seen that the periodic solution at Dn = 
1000 and Tr = -100 oscillates between three- and 
four-vortex solutions. It is found that the flow oscillates 
multi-periodically at Dn = 1000 and Tr = -150 as shown 
in Fig. 12(a). It is well justified by the phase plots as 
shown in Fig. 12(b), where multi-periodic orbit is seen. 
The associate secondary flow patterns and axial flow 
distributions are shown in 13, where it is seen that the 
multi-period oscillation at Tr = -150 is the asymmetric 
four-vortex solutions. Next, the time evolution of λ is 
performed for 380155 −≤≤− Tr and it is found that 
the unsteady flow is a steady-state solution. If Tr is 
increased more in the negative direction 
( 540390 −≤≤− Tr ), the flow becomes periodic first 
and then multi-periodic. However, if Tr is increased 
further in the negative direction, the flow turns into 
steady-state solution. Figure 14(a) shows time evolution 
of λ for Tr = -540 at Dn = 1000. It is seen that the 
unsteady flow at Tr = -540 is a multi-periodic solution, 
which is well justified by the phase spaces as shown in 
Fig. 14(b). Then, contours of typical secondary flow 
patterns and axial flow distributions for Tr = -540 are 
shown in Fig. 15, where it is seen that the multi-periodic 
solution at Dn = 1000 and Tr = -540 oscillates between 
two- and four-vortex solutions. Axial flow is consistent 
with the secondary vortices. We studied time evolution 
of λ  for 950550 −≤≤− Tr and it is found that the 
flow is a steady state solution in this range. If Tr is 
increased further in the negative direction, the 
steady-state oscillation turns into a periodic oscillation. It 
is found that the transition from steady-state to periodic 
oscillation occurs between Tr = -950 and Tr = -960. 

 
 

 
 
 
 
 
        (a) 
   
 
            
 
 
 
 
 
 
 
  
          (b) 
Fig 10. (a) Time evolution of  for the unsteady 
solutions for Dn=1000 and Tr = -100. (b) Phase Plots in 
the γλ −  plane for Dn = 1000 and Tr = -100.  

ψ  

w  
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            t     15.80        16.00        16.20          16.40 

Fig 11. Contours of secondary flow patterns (top) and 
axial flow distribution (bottom) for Dn = 1000 and Tr = 

-100. 
 

                                            
 

 
 
 
 
      (a) 
 
 
 
 
 
 
 
 
 
 
 
         (b) 
 
 

Fig 12. (a) Unsteady solutions for Dn=1000 and Tr = 
-150. (b) Phase spaces in for Dn = 1000 and Tr = -150. 

  

                    
                    
       ψ  
 
 
        w 
 
         t      27.50         27.70         27.75       28.20 
Fig 13. Contours of secondary flow (top) and axial flow 

distribution (bottom) for Dn=1000 and Tr =-150. 
 
    

 
 
 
 
 
        (a) 
 
 
 

 
 
 
 
 
 
 
          
 
 
(b) 
Fig 14. (a) Unsteady solutions for Dn=1000 and Tr = 
-540. (b) Phase spaces for Dn = 1000 and Tr = -540.  
                   
         ψ        
 
       
  

          w 
 
             t    326          326.2         326.4         326.6       
 
Fig 15 Contours of secondary flow (top) and axial flow 

distribution (bottom) for Dn = 1000 and Tr = -540. 
 
 
6. CONCLUSIONS 
     In this study, a numerical simulation is presented for 
the fully developed two-dimensional flow of viscous 
incompressible fluid through a rotating curved square 
duct for the Dean numbers, Dn = 1000 and Dn = 2000 for 
both the positive and negative rotation of the duct. 
Spectral method is used as a basic tool to solve the 
system of non-linear differential equations. We studied 
the unsteady solutions for Dn = 1000 and Dn = 2000 for 
positive rotation at 10000 ≤≤ Tr . It is found that, for 
Dn = 1000 the unsteady flow undergoes in the scenario 
‘multi-periodic →  steady-state →  
periodic→multi-periodic→chaotic’ if Tr is increased 
in the positive direction. For Dn = 2000, however, the 
steady flow turns into chaotic flow through periodic and 
multi-periodic oscillation. The secondary flow is two-, 
three- and four-vortex solutions. For the negative rotation 
( 1001000 −≤≤− Tr ) at Dn = 1000, it is found that the 
unsteady flow undergoes ‘multi-periodic →  
steady-state→  periodic→multi-periodic→chaotic’ if 
Tr is increased in the negative direction, and the flow 
oscillated between two- , four- and six-vortex solution. 
Drawing the phase spaces was found to be very fruitful to 
investigate the unsteady flow characteristics. 
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